
Introduction AEAI

Renewable Energy & Wind Potency

Wind Power Industry Status in Indonesia

Projects & Opportunities

Challenges & Conclusions

AEAI - Indonesian Wind Energy Association

ESTABLISHED: 2014

MEMBERSHIP

AEAI's Membership is a limited liability company, institution or other Indonesian legal entity that engaged in Wind Power / Wind Energy;

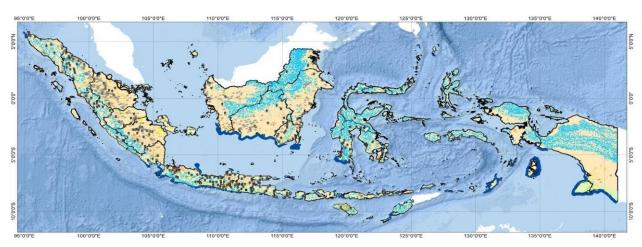
- 1. Developer of Wind Energy Power Plant (IPPs Independent Power Producers)
- 2. Wind Turbines and Components Manufacturers, Wind Power Equipment Manufacturers
- 3. Contractors, Service Company and the Consultant / Contractor, Services & Consultant
- 4. Related Companies / Related Parties

Extraordinary Member (Anggota Luar Biasa) as above criteria without Indonesia Legal Entity (

AEAI MEMBER

- RANCANG BANGUN PUTRA NUSANTARA
- 2. HYWIND ENERGY SOLUTION
- 3. LIMAPUTRA CONTRINDO
- 4. RADIANT UTAMA INTERINSCO, TBK.
- PERTAMINA POWER INDONESIA
- 6. WINDLIFE GREEN INDONESIA
- 7. AWINA SINERGI INTERNASIONAL
- 8. MATLAMAT CAKERA CANGGIH (MARUBENI)
- 9. VENA ENERGY
- 10. ALPENSTEEL

- 11. SUMMIT NIAGA
- 12. ENERGI ANGIN INDONESIA
- 13. PONDERA
- 14. ISKANDARSYAH & PARTNERS LAW FIRM
- 15. WPD INDONESIA ENERGY
- 16. RENERGY ASIA SERVICES



Indonesia
Renewable Energy
& Wind Potency

INDONESIA'S NRE POTENTIAL

AE AI

Abundant NRE potential provides huge opportunities to be developed

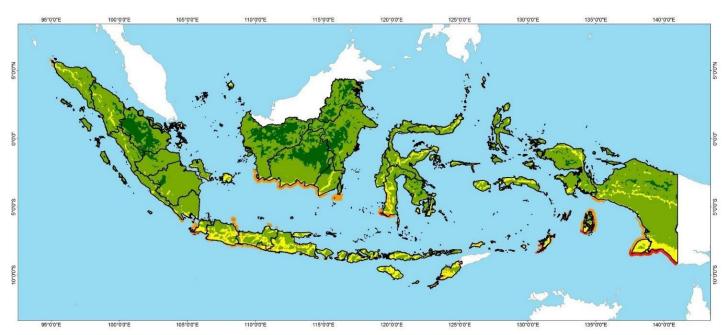
- Hydro potential is spread throughout Indonesia, especially in North Kalimantan, Aceh, West Sumatra, North Sumatra and Papua.
- Solar potential is spread throughout Indonesia, whereas NTT, West Kalimantan and Riau having higher radiation.
- Wind potential (>6 m/s) is mainly found in NTT, South Kalimantan, West Java, South Sulawesi, Aceh and Papua.
- The potential of marine energy is spread throughout Indonesia, particularly in Maluku, NTT, NTB and Bali.

LARGE NRE POTENTIAL, LOW UTILIZATION

Wind Challenges

- 1. Intermittency
- 2. Affordability for Wind Offshore

	ENERGY	POTENTIAL (GW)	UTILIZATION*) (MW)
Ø	SOLAR	3,295	203.7
2	HYDRO	95	6,601.9
P	BIOENERGY	57	1,920.4
∤ ∤	WIND	155	154.3
<u>I, I,</u>	GEOTHERMA L ENERGY	24	2,276.9
F	OCEAN	60	0
	TOTAL	3,686	11,157


- O1 The potential for new renewable energy in the predictable category is still being calculated. Currently, only 0.3% of the total potential has been utilized.
- In addition to renewable energy, the existing potential of new energy is still not widely developed.

Note

*) Based on the data of December 2021 Nuclear has Uranium potential for 89,483 tons and Thorium for 143,234 tons

MAP OF WIND SPEED (ONSHORE AND OFFSHORE)

Potency of offshore wind PP 94,23 GW

Potency of onshore wind PP **60,647 GW**

Total potency of wind power plant **154,88 GW**

Potency of wind (>6 m/s) is mainly in NTT, South Kalimantan, West Java, South Sulawesi, Aceh and Papua

Kecepatan Angin (m/s)

: Universal Transverse Mercator (UTM Sistem Grid : Geografis : World Geodatic System (WGS) 1984

- Data Final (FNL) NCEP periode 2001-2015 resolusi 1 derajat
- 2. Data Cross-Calibrated Multi-Platform (CCMP) periode 2001-2015 resolusi 0,25 derajat 3. Downscaling resolusi 5 KM menggunakan WRF
- 4. Interpolasi di ketinggian 50 m (P3TKEBTKE, 2020)

- 1. Peta batas administrasi skala 1:250.000 (BIG, 2019)
- 2. Peta batimetri nasional (BIG, 2019)
- Peta kelola laut provinsi (BIG, 2020)
- 4. Peta zonasi kawasan konservasi perairan (BIG, 2020)

KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL

BADAN PENELITIAN DAN PENGEMBANGAN ENERGI DAN SUMBER DAYA MINERAL PUSAT PENELITIAN DAN PENGEMBANGAN TEKNOLOGI KETENAGALISTRIKAN, ENERGI BARU, TERBARUKAN, DAN KONSERVASI ENERGI

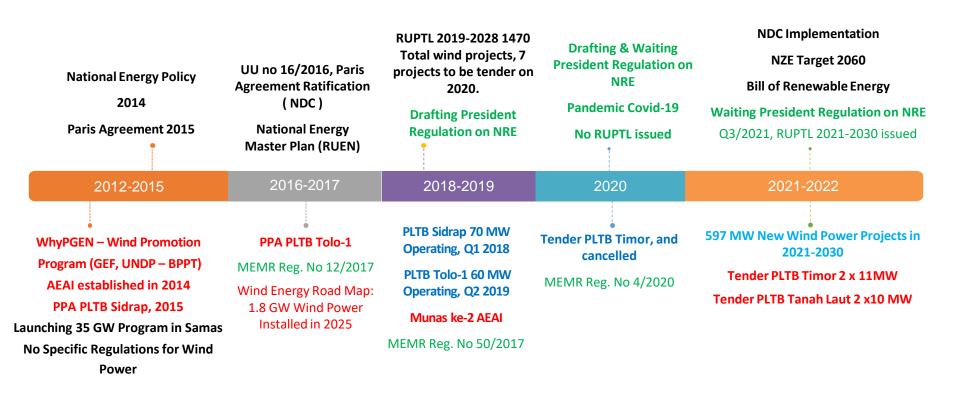
PETA INI HANYA SEBAGAI PETA INDIKATIF POTENSI ENERGI ANGIN. UNTUK KEPERLUAN PEMBANGUNAN PLT ANGIN PERLU DILAKUKAN STUDI KELAYAKAN

WIND ENERGY POTENTIAL PER PROVINCE

No	Provinsi	Potensi on:	shore (MW)	Potensi offshore (MW)
NO	Piovilisi	Kec 4 - 6 m/s		Kec > 6 m/s
1	Bali	757	262	535
2	Banten	1.199	554	3.744
3	Bengkulu	1.428	85	0
4	DI Yogyakarta	560	519	979
5	DKI Jakarta	4	0	0
6	Gorontalo	137	0	0
7	Jambi	37	0	0
8	Jawa Barat	5.236	1.800	5.691
9	Jawa Tengah	4.374	839	3.347
10	Jawa Timur	6.450	1.457	2.297
11	Kalimantan Barat	464	90	4.878
12	Kalimantan Selatan	971	35	7.449
13	Kalimantan Tengah	437	244	11.136
14	Kalimantan Timur	212	0	0
15	Kalimantan Utara	73	0	0
16	Kepulauan Bangka Belitung	1.596	191	0
17	Kepulauan Riau	797	125	0
18	Lampung	1.072	65	2.372
19	Maluku	1.573	1.615	19.330
20	Maluku Utara	504	0	17
21	Nanggroe Aceh Darussalam	663	231	1.467
21	Nusa Tenggara Barat	2.004	601	1.388
23	Nusa Tenggara Timur	6.459	3.729	1.836
24	Papua	1.159	252	19.894
25	Papua Barat	425	12	1.366
26	Riau	22	0	0
27	Sulawesi Barat	379	135	137
28	Sulawesi Selatan	2.569	1.624	4.152
29	Sulawesi Tengah	908	0	266
30	Sulawesi Tenggara	1.157	257	381
31	Sulawesi Utara	925	289	1.569
32	Sumatera Barat	428	0	0
33	Sumatera Selatan	301	0	0
34	Sumatera Utara	356	0	0
	Total	60.	647	94.231
	T	-		

Wind Energy Potential onshore **60,647 GW**

Wind Energy Potential offshore **94,231 GW**


Total Wind Energy
Potential 154,88 GW

Source: www.p3tkebt.esdm.go.id

LAST 10 YEARS NOTED!

DEVELOPMENT STATUS HIGHLIGHT

POTENCY	STATUS	2022 Q2	REMARK	
	INSTALLED	149 MW	Sidrap 75 MW Jeneponto 72 MW	
ONSHORE 15 GW	INSTALLED	(PPA 130 MW)	Small Scale & Non Commercial 2 MW	
	CONSTRUCTION	0		
60.6 GW	PPA	0	No PPA since 2017	
4 m/sec up	TENDER 2022	42 MW	Oel Boeboek 2 x 11 MW Tanah Laut 20 MW	
OFFSHORE 94.8 GW 6 m/sec up	Wind Project in RUPTL 2021-2030 (Confirmed)	597 MW + PLTB Tersebar	Other Opportunities	
	MEASURED POTENCY	Around 3 GW	Private/PLN/ P3TEK EBTKE	
	TARGET	28 GW by 2050 39 GW by2060	NEP 2014 NZE Road Map	

Draft Presidential Regulation On Re Power Purchasing By PLN

01

FiT staging 2 no excalation phase, location factor is valid for Staging 1:

- Hydro PP (including Hydro PP reservoir) for capacity up to 5 MW
- Solar PV and Wind PP for capacity up to 5 MW
- Biomass PP and Biogas PP for capacity up to 5 MW
- Solar PV and Wind PP expansion for capacity up to 5 MW
- Biomass PP and Biogas PP expansion for capacity up to 5 MW

02

Ceiling price (HPT) staging 2 no excalation phase, location factor is valid for staging 1:

- Geothermal PP for all capacity
- Hydro Power Plant (including Hydro Power Plant reservoir) for capacity>5 MW
- PV and Wind PP >5 MW
- Biomass PP and Biogas PP for capacity >5 MW
- PV and Wind PP expansion >5 MW
- Biomass PP and Biogas PP expansion >5 MW
- excess power Geothermal, Hydro, Biomass, Biogas PP all capacity.

03

Agreement Price:

- Hydro Power Plant Peaker for all capacity
- Waste PP, Biofuel PP, Ocean Energy PP for all capacity

FiT Price with no Location Factor for Hydro PP, PV, Wind PP built entirely by State Budget/Grant

HPT with no Location Factor for Geothermal, Hydro PP, PV and Wind PP built partially by State Budget/Grant and Biomass PP, Biogas PP and Waste PP built entirely by State Budget/Grant

The agreement price requires the approval from the Minister of EMR

The provision of electricity purchase price is evaluated 3 years at the most.

In the event the evaluation resulting in price change, the provision of price change is regulated by Ministerial Regulation.

Prices of Electricity Generated by Wind Power in President Regulation on Renewable Energy (Final Draft)

Pembangkit Listrik Tenaga Bayu (PLTB)

Capacity	Feed I	n Tarrif	Highest Benchmark Price (HPT) (Tender)				
(MW)	≤ 5	≤ 5 MW		>5 MW s.d 20 MW		MW	
	Staging year 1-10	Staging year 11-30	Staging year 1-10	Staging year 11-30	Staging year 1-10	Staging year 11-30	
(cent \$/kWh)	13,57 x F	8,48	13,57 x F	8,48	11,31 x F	7,07	
LCOE c\$/kWh)	12,00		12,00		10,00		

Pembangkit Listrik Tenaga Bayu (PLTB) + BESS

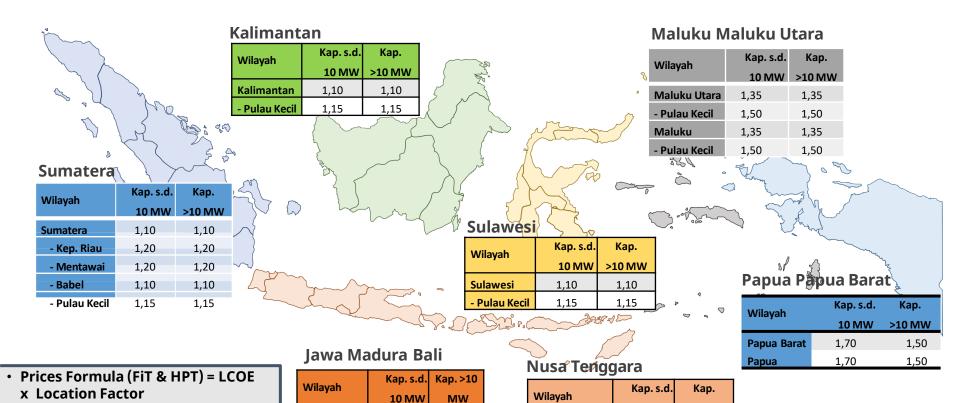
	Feed In Tarrif			Highest Benchmark Price (HPT) (Tender)					
Capacity (MW)	≤ 5 MW		>5 MW s.d 20 MW		>20 MW				
(INIXY)	Staging year 1-10	Staging year 11-30	HPT battery	Staging Year 1-10	Staging year 11-30	HPT battery	Staging year 1-10	Staging year 11-30	HPT battery
(cent \$/kWh)	13,57 x F	8,48	7,20	13,57 x F	8,48	7,20	11,31 x F	7,07	6,00
LCOE c\$/kWh)	12,00			12,00			10,0	0	

Some References

PLTB Sidrap, 70 MW, investment cost US\$150 billion or Rp 2,02 trillion with PPA: cent \$ 11/kWh or Rp 1.463/kWh for 30 years.

PLTB Jeneponto, 65 MW, investment cost US\$ 150 million and PPA US\$ 10,89 cents/kWh (MEMR, 2017)

Feasibility Study of Probolinggo of 20 x10 kW with investment cost of about Rp. 52 Billion and PPA Rp 2.627,-/kWh equal to cent \$ 11.6/kWh (MEMR, 2016)



LOCATION FACTOR (F)

FiT: Feed in Tariff staging

HPT: Ceiling

Jamali

Pulau Kecil

1,00

1,10

1,00

1,10

10 MW

1,25

1,25

1,35

Nusa Tenggara

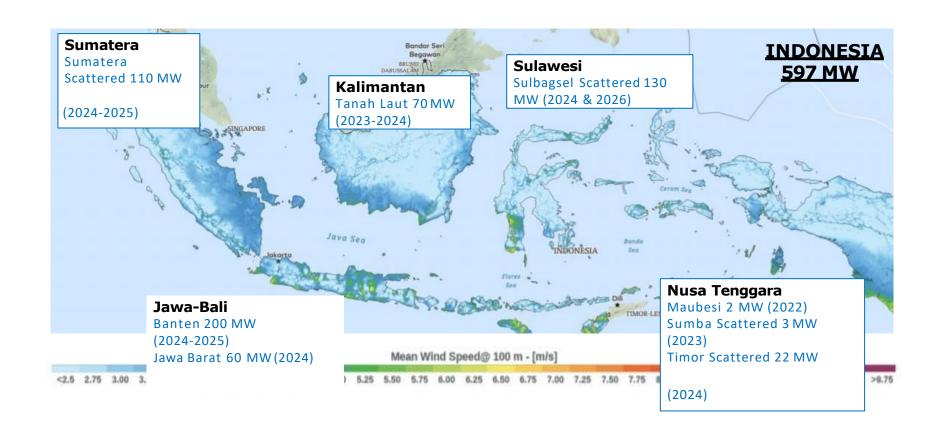
- Pulau Besar - Pulau Kecil >10 MW

1,20

1,20

1,35

Wind Power Project in Next Ten Years (Green RUPTL 2021-2030)


Base on the National Master Plan of Power Supply (RUPTL 2021-2030), Indonesia to add power plant of 40.6 GW for 10 years with the portion of NRE reaching 20.9GW or 51.6%. It is planned to retire coal generators of 1.1GW and replacement of old Diesel/Gas plants around 3.6GW so that PLN's generating capacity in 2030 will be 99.2GW.

TYPE	[MW]	[%]	
<i>NEW RENEWABLE</i>	20.923	51,6	
Hydro	10.391	25,6	
Wind	597	1,5	
Bioenergy	590	1,5	
Geothermal	3.355	8,3	
Solar	4.680	11,5	
NRW Base	1.010	2,5	
BESS	300	0,7	
FOSSIL	19.652	48,4	
Coal	13.819	34,0	
Gas	5.828	14,4	
Diesel	5	0,01	
TOTAL	40.575	100	

COD Plan							
Year	2021	2022	2023	2024	2025	2026	
MW	ı	2	33	337	155	70	

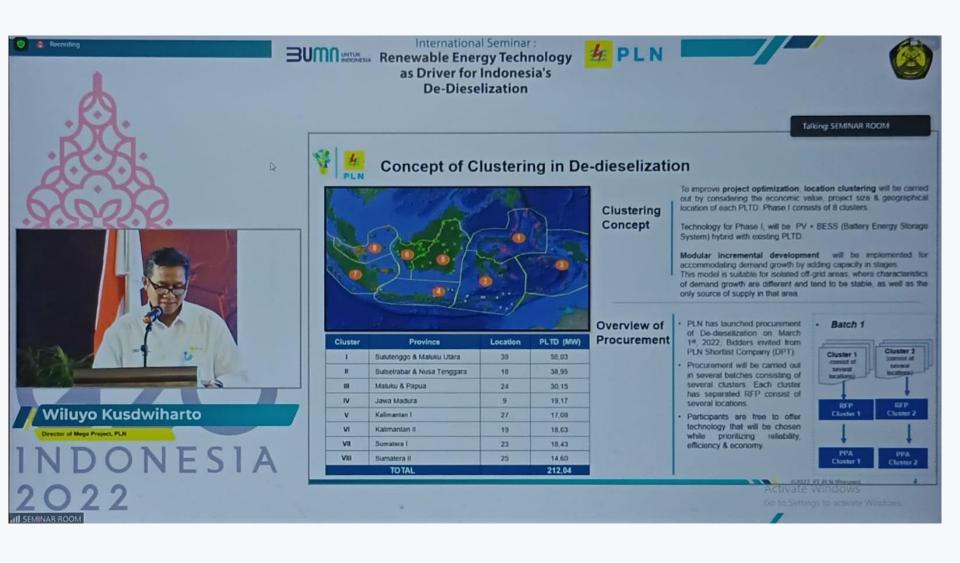
Wind Power Development in Indonesia Base on Green RUPTL 2021 - 2030

Wind Power Project in Indonesia

No	Developer	Location	# Unit	Unit Capacity	Total Capacity	COD Year
Α	Operation					
1	UPC Renewable	Sidrap, South Sulawesi	1	70	70	2018
2	Vena Energy	Jeneponto, South Sulawesi	1	60	60	2019
В	RUPTL 2021-2030					
1	PLN	Sumatera	2	55	110	2024, 2025
		Banten	2	100	200	2024, 2025
		Timor, NTT			2	2022
2	IPP					
		West Java			60	2024
		Kalimantan	2	30, 40	70	2023,2024
		Sulawesi Tersebar	2	60, 70	130	2024, 2026
		Timor, NTT	2	11	22	2024
		East Sumaba, NTT			3	2023
					597	
С	Terminated					
	1.PLTB Sukabumi 10 MW (Rp	>>>	project te	rminated		
	2.PLTB Samas 50 MW (12,51	>>>	project te	rminated		

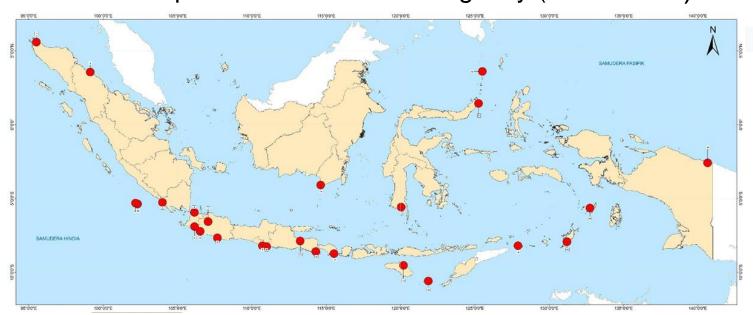
OPPORTUNITIES – 1: LIST OF LOCATIONS MENTIONS RUPTL (POTENTIAL PROJECTS)

South ENERGIANGIA AND	ķ
AEAI	1


Sumatera 180 MW		Sulawesi 458 MW		
Aceh Besar, Padang Sidempuan		PLTB Bitung	63 MW	
riseri besar, radang sidempudi		PLTB Selayar	5 MW	
Java 1188 MW		PLTB Sidrap Expansion	63 MW	
PLTB Kab Lebak	150 MW	PLTB Jeneponto II	72 MW	
PLTB Kab Pandeglang	200 MW	PLTB Bulukumba	50 MW	
PLTB Cirebon	85 MW	PLTB Bantaeng	100 MW	
PLTB Garut	150 MW	PLTB Takalar	60 MW	
PLTB Sukabumi	170 MW	PLTB Buton	15 MW	
PLTB Samas	50 MW	PLTB Majene	30 MW	
PLTB Tegal	132 MW			
PLTB Gunung Kidul	10 MW	Maluku 50 MW		
PLTB Samas Bantul	50 MW	PLTB Ambon	20 MW	
PLTB Banyuwangi	75 MW	PLTB Ambon	15 MW	
PLTB Probolinggo	50 MW	PLTB Maluku Tenggara Barat	5 MW	
PLTB Tuban	66 MW	PLTB Kei kecil	5 MW	
Kalimantan 70 MW		PLTB Nusa Saumlaki	5 MW	
PLTB Tanah Laut	70 MW			
Bali 60 MW		Papua 108 MW		
PLTB Lembongan/N. Ceningan	20 MW	PLTB Papua	50 MW	
PLTB Nusa Penida	20 MW	PLTB Papua Barat	58 MW	
PLTB Bali Utara	20 MW			
		Nusa Tenggara 171 MW		
		PLTB Lombok	115 MW	
		PLTB Mandalika	30 MW	
		PLTB Oelbubuk – Timor	20 MW	
Total 2.285 MW		PLTB Sumba	3 MW	
		PLTB Sumba Timur	3 MW	

OPPORTUNITIES – 2 DIESEL CONVERSION PROGRAM

Diesel Conversion Program Phase 2 (Converted to any RE close to Diesel Generator locations)


Small Scale in remotes, small 1-5 MW, dozen location in a cluster.

OPPORTUNITIES – 3: Efforts by Developers

- 1. RUPTL is a dynamic plan: Intermittent Generation PLTS/PLTB Tersebar (spread) planned in Java almost 3GW, only 60 MW for Wind. Wind is less intermittent compare to Solar. So prepare ready projects and propose to PLN.
- 2. Partnership with SOEs (51:49)
- 3. Initiator for Wind Off-Shore
- 4. Partnership with Public Services Agency (BLU P3Tek)

P3Tek, Wind Measurement Locations

OPPORTUNITIES - 4: 10 GW ++ Gap Up To 2025

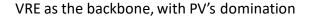
Target as NEP/RUEN:

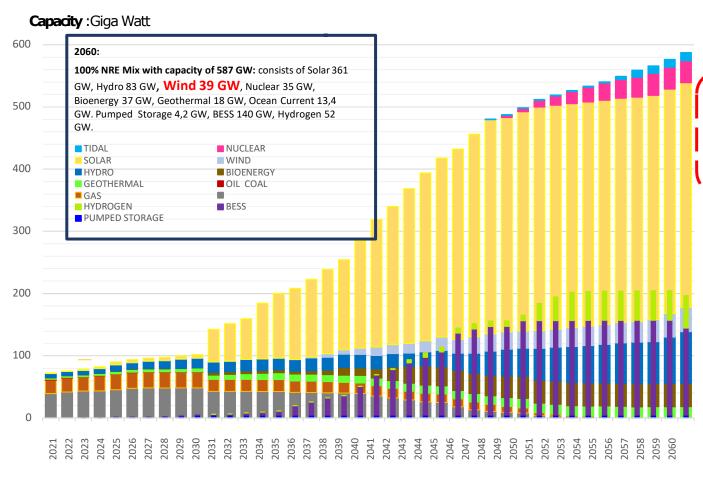
23% share Renewable Energy on National Energy equal 45.GW Installed Capacity.

Current Status:

Installed Capacity around less than 10% or 11,2 GW.

Gap up to 2025 : 33 GW


How to Fulfil the 33 GW Gap?


- Green RUPTL up to 2025 around 11 GW, including PLN Green Booster Program; Cofiring Biomass on PLTU, Special Solar PV Project (Floating & Building), Dedieselization, Hydro (using Dam)
- 2. Green RUPTL 2026-2030, around 10 GW
- 3. 10-12 GW ??, (Hope open for Initiation, Proposal) as long no issues on Demand

With Wind Ready Resources, New Wind Power can develop in 3 years or less !!

OPPORTUNITIES – 5: FUTURE ELECTRICITY SUPPLY PLAN

- 1 Coal/Gas PP: No additional CFPP unless contracted/under construction. PLN CFPP will be retired earlier than asset revaluation. IPP CFPP retired after PPA ends. Gas PP retired after 30 years (residual < 1 GW, CFPP: 2057, Gas PP: 2054).
- NRE: Additional power plant after 2030 will only come from NRE. Starting from 2035, it will be dominated by Variable Renewable Energy (VRE) in form of Solar PP, followed by Wind PP and Ocean Current PP in the following year.
 - Geothermal PP: Maximized up to 75% of
- its potential.
- Hydro PP: Will be maximized and sent to load center in other islands. Serves to balance VRE power plants.
- STORAGE: Pumped storage start in 2025, Battery Energy Storage System (BESS) massively used in 2021. Hydrogen will be utilized gradually starting from 2031 and massively by 2051.
- **6. Nuclear PP:** Enter the system in 2049 to maintain system reliability and will reach
- 6 35 GW by 2060.

OPPORTUNITIES - 5 ROADMAP OF ENERGY TRANSITION TO NZE

75%-85% Final Energy is Electricity (at present only around 20%), Indonesia need around 2000TWh by 2060 from Green and Clean Energy, VRE (Solar and Wind) and all other RE will be the sources of Electricity, At least 40 GW Wind power to develop by 2060.

2025: Emission reduction 198 Million tons CO₂

Supply:

- > Implementation of 3.6 GW PV Rooftop
- Construction of NRE PP with capacity of 10.6 GW
- Gasification PP 1.7 GW
- Take out CFPP 8.8 GW on RUPTL
- Convert Diesel PP to NRE PP
- Gas PP 0.8 GW as a replacement for CFPP

<u>Demand:</u>

- Electric vehicles 400 thousand cars and 1.7 million motorcycles
- City gas (Jargas) for 8.2 million households
- Gas fueled cars 100 thousand
- Application of Energy Management and SKEM
- Decrease in LPG imports with Induction cookers for 8.2 million households

2030: Emission reduction 314 Million tons CO₂

Supply:

Construction of 10.3 GW NRE PP to replace CFPP

Demand:

- Decrease in LPG imports with Induction cookers for 18.2 million households
- Electric Vehicles 2 million cars and 13 million motorcycles City gas (Jargas) for 10 million households
- Gas fueled cars 300 thousand
- DME utilization as LPG substitution for 20.4 million households
- Application of Energy Management and SKEM

2035: Emission reduction 475 Million tons CO₂

Supply:

- No additional fossil PP
- No Diesel PP
- Retirement CFPP 6 GW*)
- Construction of NRE PP: PV 99 GW, Hydro 3.1 GW, Bioenergy 3.1 GW and Geothermal PP 5.6 GW
- ➤ Hydrogen utilization 328 MW
- Battery utilization 7 GW

Demand:

- Induction cooker for 28.2 million households
- Electric Vehicles 5.7 million cars and 46.3 million motorcycles
- City gas (Jargas) for 15.3 million households
- Gas fueled cars 800 thousand

2040: Emission reduction 796 Million tons CO₂

Supply:

- Retirement CFPP 3 GW*)
 Construction of NRE PP: PV 68.5
- GW, Wind PP 9.4 GW. Hydro
 - 3.7 GW, Bioenergy 7.8 GW, and Geothermal 1 GW
- Hydrogen utilization 332 MW
- Battery utilization 46 GW

Demand:

- Induction cooker for 38,2 million households
- Electric vehicles 12.3 million cars and 105 million motorcycles
- City gas (Jargas) for 20.3 million households
- Gas fueled cars 2 million

2050: Emission reduction 956 Million tons CO₂

Supply:

- Retirement CFPP 31 GW
- Construction of NRE PP: PV 180.2 GW,
 - Wind PP 17.5 GW, Hydro 13.7 GW, Bioenergy 23 GW, Geothermal 3 GW, Ocean current PP 1.3 GW and Nuclear PP 5 GW
- Hydrogen utilization 9 GW
- Battery utilization 151 GW

Demand:

- Induction cooker for 48.2 million households
- Electric vehicles 38.2 million cars and 205 million motorcycles
- City gas (Jargas) for 23.4 million households
- Gas fueled cars 2.8 million

2060: Emission reduction 1.526 Million tons CO₂

Supply:

Retirement CFPP 8 GW*)

2051

2060

- Retirement Gas PP 8 GW
- Construction of NRE PP: 8.2GW,

Wind PP 11.6 GW,

- Hydro 37.9 GW, Bioenergy 2.1 GW, Geothermal 3 GW, Ocean current 12.1 GW and Nuclear PP 30 GW
- Hvdrogen utilization 52 GW
- Battery utilization 140 GW

Demand:

- Induction cooker for 58 million households
- Electric vehicles 69.6 million cars and 229 million motorcycles
- City gas (Jargas) for 23.9 million households

GENERAL RE CHALLENGES

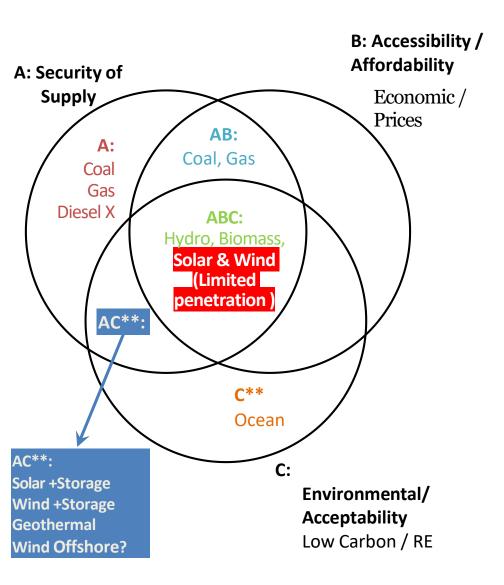
What is faced by Wind Energy and other Renewable Energy in Indonesia in the last 5 years is a difficult situation for several reasons;

Under Demand / Negative Growth Conditions (due to Covid-19)
Competition among all types of Renewable Energy with a potential around 3600 GW while the potential for new projects in the next 10 years is less than 20 GW.

GENERAL CHALLENGES

- Absence of workable regulations
- TKDN Policy vs Market Fact
- Expected Cheaper Tariff RE vs Subsidies for fossil energy (DMO and coal price caps)
- Uncertainty of RUPTL
- Delay of Procurement / Project Delays

WIND POWER CHALLENGES



- 1. Intermittency Issues, Limited Penetration
- 2. Wind vs Solar → Solar is Preferable
- 3. Uncertainty of more than 2GW Wind Ready Resources, when and who will to develop?
- 4. Lack of Regulations; Prices, Tender, Free Wind Measurement vs License to Develop
- 5. PLN "likely" to develop many Wind Power
- 6. Absence of Wind Power TKDN (Domestic Preferences)
- 7. Absence of Regulations for Small Scale Wind Power (less than 1 MW)
- 8. Affordability of Wind Power + BESS and Offshore Wind (Not Affordable Yet)

NRE Plants vs Trilemma Energy Indonesia

Security, Affordability dan Acceptability

If you have technology or initiation using other power plant such as; Nuclear, Hydrogen, Wind Offshore, CCUS or others, please locate on this Trilemma Diagram

Presidential regulation related to NRE, which has **been** awaited for more than 2 years, will change the level of B - "Affordability" and more NRE Plants will meet the ABC criteria

Priorities

- 1.Prioritizing NRE generators that do not increase BPP much: ABC Criteria
- 2. More Solar to develop PLTS because the prices tends to fall, Floating Solar and inline with Solar Industry Development
- 3.Conversion Fossil Fuel to NRE
 Co-firing Biomass
 De-dieselization
 Others Green Booster Project

CONCLUSIONS

- 1. Be optimistic, conditions will soon change for the better and only NRE New Plant to build after 2025
- 2. Study All Opportunities 1-5, if any possible, try to follow up with a proposal to help the government fill the installed capacity gap

资格预审流程咨询服务 PLN DPT CONSULTANCY SERVICES

What is DPT or List of Selected Providers?

DPT or List of Selected Providers is a list of Special Providers of goods (manufacturers)/services (developer/IPP) declared to have passed by PLN through a qualification assessment mechanism which is updated periodically based on the performance of the providers of goods/services.

自2017年年底以来,只有入选PLN DPT名单的公司才能参与可再生能源项目的采购流程。

目前开放申请的DPT DPT OPEN FOR APPLICATION

Manufacture

Photovoltaic Solar Module Manufacture

IPP Power Developer

IPP Biogas Power Plant (PLTBg)

IPP Biomass Power Plant (PLTBm)

IPP Wind Power Plant (PLTB)

IPP Solar PV Power Plant (PLTS)

IPP Geothermal Power Plant (PLTP)

Ш

TERIMA KASIH THANK YOU 謝謝

