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Energy Sustainability: Energy Triangle
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An approach in which smart electricity, thermal and gas grids are combined with storage technologies and
coordinated to identify synergies between them in order to achieve an optimal solution for each individual sector as
well as for the overall energy system

Smart electricity grids

Connects flexible electricity demands such as heat pumps and electric vehicles to the
intermittent renewable resources such as wind and solar power

Smart thermal grids

connect the electricity and heating sectors. This enables the utilization of thermal storage
for creating additional flexibility and the recycling of heat losses in the energy system

Smart gas grid

connect the electricity, heating, and transport sectors. This enables the utilization of gas
storage for creating additional flexibility. If the gas is refined to a liquid fuel, then liquid fuel
storages can also be utilized

Lund H, Ostergaard PA, Connolly D, Mathiesen BV. Smart energy and smart energy systems. Energy 137 (2017) 556-565 3



DX in Society 5 = Big Data + Al + 5G

Big Data is not ’just’ data, there are a
few new considerations

Terabytes to
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existing data
to process
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Data in
Motion

Streaming data,
milliseconds to
seconds to
respond

Big Data

Data in
Many Forms

Structured,
unstructured,
text, multimedia

Datain
Doubt

Uncertainty due to

data inconsistency

& incompleteness,
ambiguities,

latency, deception,

model
approximations

~ Open Data —

Data in
the Open

Open data is
generally open to
anyone. Which
raises issues of
privacy.
Security and

provenance

Data of
Many Values

Large range of data
values from free
(data philanthropy
to high value
monetization)
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Digital Transformation in Energy Sector g RIK

Digital technologies enable a multi-directional and highly integrated energy system placing cities in the forefront
of decarbonising our societies as a whole
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Smart Grid Transition p RER T

The need for gradual evolution of the distribution networks from a passive structure to an active
one (bidirectional)

Smartening the grid (software and hardware), smartening the generators (from just being connected
to integrated), and smartening the load (awareness and active participation)

Comparison between conventional and smart grid systems

. . . . . Smart Grids
Technical Issue BAU Distribution Network (Active distribution networks)
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Smart Electricity Grid
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Electricity network using digital and other advanced technologies to monitor and manage

the transport of electricity from all generation sources.

Key Characteristics

Uses information technologies to improve how
electricity travels from power plants to consumers

Allows consumers to interact with the grid

Integrates new and improved technologies into the
operation of the grid

Self healing: grid detects, analyzes, responds,...
Provides power quality to consumer and industry

Accommodates demand responds, combined heat
and power, wind, PV, and end-use efficiency

Transform the power sector into a secure, adaptive,
sustainable and digitally

OPERATIONS SERVICE
PROVIDER

B FOUNDATIONAL
SUPPORT SYSTEMS

GENERATION

NON-BULK
GENERATION GENERATION
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Smart Grid
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Real-time monitoring systems
(Phasor measurement unit (PMU); Real-time thermal rating (RTTR); Smart meter, etc.)

Active power and
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Consumers to participate in . Enable intermittent power
operation of the grid Self-healing generation sources
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Generation

» High dependencies on fossil fuels, low total efficiency, high CO2 emission (0.8 t-CO2/MWh)

* Demand-driven,

» Quantity oriented and minimum attention on quality services, limited balancing resources/capacities
 Low predictability (both generation and demand)

Transmission/Distribution

* No/minimum energy storage

» Separated generation and consumption

* No national (and international) integrated grid
» Congested electrical grid

Consumption

* Low awareness, responsibility, and ownership

 Uni-directional (no active participation)

 Large consumption gap and lifestyle

* No smart metering system (low capabilities on monitoring, visualization, data collection, and prediction)

Systems

* Closed market, no profit distribution, unclear mechanism and regulation

» Unclear grand scenario for future

* Minimum transparency, difficult to access contract, regulation, guarantee, and assistance
* Low self healing capability, prone to disaster,
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Carbon-free secondary resources
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Mutual conversion and utilization
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Integration of H2/NH3 to Electrical Grid
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Daily load leveling/shifting

Possible Balancing and Ancillary Services

Peak shaving, valley filling ==
Spinning and replacing X :_é .
reserves TR

Weekly and seasonal storage
Congestion management
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e Smooth grid integration
o [ntermittence reduction
e Energy curtailment reduction

Priority of integration,
based on responsiveness
for possible quality service

Daily load leveling/shifting
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Congestion management mJ

Emergency power
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Integration of Electric Vehicles (Vehicle-to-Grid, V2G) o N
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(Source: Parker project final report)

Integration of transportation and energy sectors

V2G facilitates new economic and social opportunities to the owners/drivers, not only as
transportation, but also energy services

Increasing the total energy efficiency and reducing CO2 emission 3
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- Decarbonization
- Clean conversion technology
- Fuel carbon reduction, intermediate conversion

- Energy efficiency
- Awareness on the “consumed energy amount”, impact to economy and environment
- Incentives on introduction of energy-efficient technology/devices

- Renewable energy

- Optimum adoption of RE (geothermal, biomass, PV, wind, etc.)
Accurate forecast technology
Domestic components manufacturing
Appropriate incentives planning (fiscal, licensing, FIT, etc.)
Larger RE adoption is not always greener: balancing and mapping

- Security
- Strong focus on security must be balanced with other pillars
- Security on energy storage to balance the supply and demand
- Accurate potential calculation on domestic energy resources
- Optimum spatial mapping in accordance with the resources
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- Smart system
- Smart and automated system, but flexible and facilitative
- Capability for big data processing, good data accessability

- Open market and participation opportunity
- Clear regulation and mechanism
- Participation encouragement from private and residential sectors
- Overall monitoring
- Profit distribution
- Resiliency
- Strong against the disaster
- Self healing capability
- Social
- Employment
- Energy-saving awareness
- General policies
- Clear and accurate grand scenario on energy sector
- Prioritization on domestic human resource
- Establishment of environmental conservations obligations
- Ease of contract, transparency, guarantee, and assistance in fiscal risks
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